HEAT,..., THE LAST FRONTIER

Clayton Handleman
President, Heliotronics, Inc.

PURPOSE

- Share lessons learned
- Stimulate discussions to catalyze inverter technology improvements
- Stimulate discussion that will support the DOE to develop new industry support programs and improve existing ones

OVERVIEW

- Design goals
- Survey of approaches to thermal management
- Heliotronics inverter work
- Lessons learned
- Ideas for Sandia

INDUSTRY FOCUS DU JOUR

- Get the thing to work with low harmonics and reasonable efficiency (early 80s)
- Maximize efficiency (late 80's early 90's)
- Codes and standards (mid 90's)
- Get to the bottom of the bathtub (late 90's)
- Stretch the bathtub (Now) → get the heat out

HEAT SOURCES

- Power Semiconductors
 - Point sources
- Magnetics
 - Diffuse

HEAT SENSITIVE COMPONENTS

- Electrolytic capacitors, 10C halves the lifetime
- Power semiconductors, junction should be at least 25C below rated max

Thermal Approaches

- Exotic approaches
 - Heat Pipe
 - Convection driven liquid cooling
- Passive Extruded Heatsink on an unvented box
- Passive Extruded Heatsink on vented box
- Active cooling with vented box
- Active cooling with unvented box
- Fully passive, engineered heat sink / enclosure

SMA Sealed With External Extrusion

ALPHA Active Internal and External

ALPHA Active Internal and External

OUTBACK Sealed With Active Internal

OUTBACK Vented Active Internal

OUTBACK Sealed, Active Internal and External

ADVANTAGES OF CAST AL

- Large distributed surface area
- Engineered control of heat flow
- Relatively easy thermal partitioning
- Fully passive
- Can be sealed
- Can pot the magnetics
- Solid modeling and thermal design tools easily integrated into the design process

HELIOTRONICS EXPERIENCE

- Funded through 3 NYSERDA awards
- High reliability and serviceability emphasized
- Heavy emphasis on effective passive cooling design
- Cast AL enclosure / heat sink

TESTING SUPPORT FROM SANDIA NATIONAL LABORATORIES

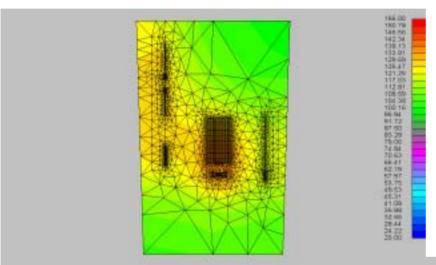
- Thermal
 - Chambers, Imaging and TC
- Anti-Islanding Performance Confirmation
- Surge Testing
- MPPT
- Power Quality, THD and Power Factor
- Conducted RFI

THERMAL "BAG OF TRICKS"

- Potted magnetics move heat to the exterior without vents
- Large surface area allows fully passive cooling
- 3D geometry provides flexibility:
 - Fin design
 - Component mounting
 - Partitioning
 - Engineered heat flow

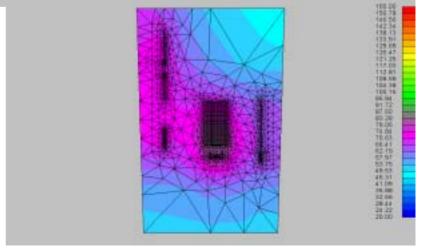
THERMAL DESIGN PROCESS

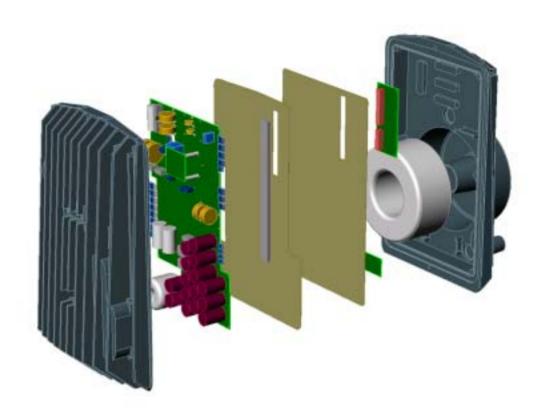
- Concept
- Model
- Modify
- Build and Test



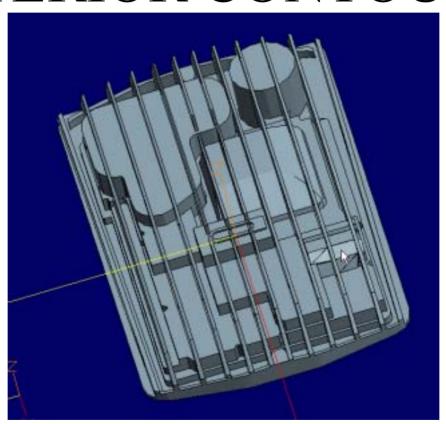
CONCEPT

- No fins
- Distribute heat by varying wall thickness
- Pot magnetics
- Strategic semiconductor mounting
- Enclosure partitioning

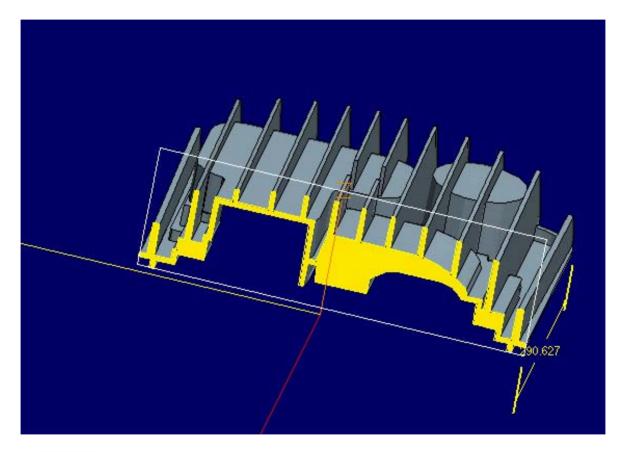

SIMULATION SHOWS FINS ARE IMPORTANT


Fins reduced junction temperature by 50C

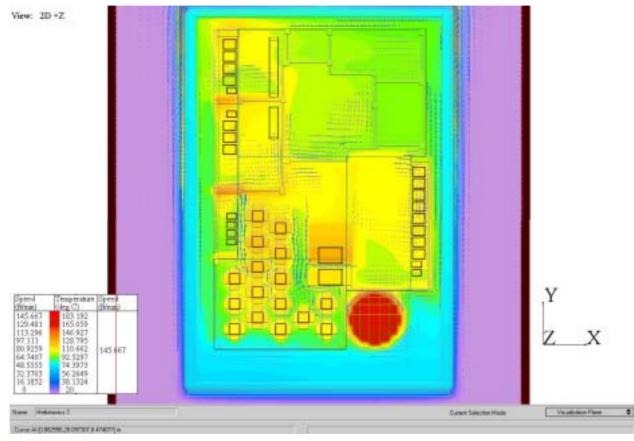
Add fins to the design.



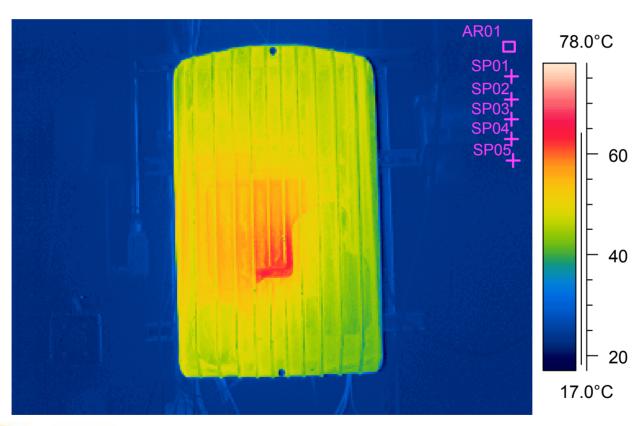
ADD FINS AND FINALIZE



SOLID MODEL SHOWING EXTERIOR CONTOURS



ENGINEERED HEAT FLOW


MODEL LAYOUT

BUILD AND TEST

Image by Sandia National Laboratories

UNIT IN THE FIELD

High IR Emissivity Paint

LESSONS LEARNED

- Very helpful having thermal design as part of the process from the beginning
- Cast AL is very promising as an approach to long lifetime high reliability inverters.
 - Heliotronics results
 - Outback Power's successful commercialization of cast AL enclosure
- Thermal modeling is a valuable addition to the designers tool box

THOUGHTS FOR DOE

SANDIA'S FUNDING ROLE

- Great engineering still coming out of small companies, should diversify project portfolio between low risk and high risk players. Must fund the innovators who have limited access to capital.
- Large players should be encouraged to commercialize through acquisition if technology is proven. E.g. Beacon Power purchase of Advanced Energy technology. The technology doesn't die even if the organization does.

SANDIA'S EXISTING SERVICE ROLE

- Continue high capital testing services:
 - Environmental chambers
 - IR Imaging
 - HALT
 - Surge testing
 - MPPT on solar array
- Speed turn around
- Upgrade equipment where needed (IR Imaging)

POTENTIAL EXPANSION AREAS

- High end 3-d thermal modeling compatible with industry standard tools such as Solid Works
- Component testing and verification, for example, EL capacitors, power semiconductors, connectors, fans. Well designed booklets covering these technologies would be extremely beneficial.
- Be a catalyst in system standardization, for example: Inverter connectors, data communications.

